
ScannerVision: Scanner-based image acquisition of medically important 
arthropods for the development of computer vision and deep 
learning models

Song-Quan Ong a,b,* , Nathan Pinoy a, Min Hui Lim b, Kim Bjerge c ,  
Francisco Javier Peris-Felipo e , Rob Lind f, Jordan P. Cuff g, Samantha M. Cook h ,  
Toke Thomas Høye a,d,**

a Department of Ecoscience, Aarhus University, C. F. Møllers Allé 8, DK-8000, Aarhus, Denmark
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A B S T R A C T

Computer vision methods offer great potential for rapid image-based identification of medically important 
arthropod specimens. However, imaging large numbers of specimens is time consuming, and it is difficult to 
achieve the high image quality required for machine learning models. Conventional imaging methods for 
identifying and digitizing arthropods, such as insects and spiders, use a stereomicroscope or macro lenses with a 
camera. This method is challenging due to the narrow field of view, especially when large numbers of arthropods 
need to be processed. In this paper, we present a high-throughput scanner-based method for capturing images of 
arthropods that can be used to generate large datasets suitable for training machine learning algorithms for 
identification. We demonstrate the ability of this approach to image arthropod samples collected with different 
sampling methods, such as sticky traps (unbaited, in different colors), baited mosquito traps as used by the US 
Centers for Disease Control and Prevention (CDC) and BioGents-Sentinel (BGS), and UV light traps with a sticky 
pad. Using different strategies to place the arthropods on a charge-coupled device (CCD) flatbed scanner and 
optimized settings that balance processing time and image quality, we captured high-resolution images of 
various arthropods and obtained morphological details with resolution and magnification similar to a stereo-
microscope. We validate the method by comparing the performance of three different deep learning models 
(InceptionV3, ResNet and MobileNetV2) on two different datasets, namely the scanned images from this study 
and the images captured with a camera of a stereomicroscope. The results show that the performance of the 
models trained on the two datasets is not significantly different, indicating that the quality of the scanned images 
is comparable to that of a stereomicroscope.

1. Introduction

Arthropods, which include insects and arachnids, are the largest and 
most diverse group of animals on Earth (Thorp, 2009; Mora et al., 2011; 
Roskov et al., 2021). As pollinators, decomposers and food sources for 

other species, they play a crucial role in the function and stability of 
ecosystems (Verma et al., 2023). To study their dynamics and ecological 
role, arthropod samples are usually collected in the field using active 
methods, e.g. sweep netting, or passive methods, e.g. pitfall trapping 
methods, depending on the study objective. The large number of 
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samples, the diversity of species and their complex morphological 
variation make the identification of arthropods challenging and time 
consuming. Automated recognition systems using computer vision and 
deep learning models offer an excellent alternative to support the 
identification and counting of arthropods in large numbers (Høye et al., 
2021; Popescu et al., 2023; Badgujar et al., 2023; Dong et al., 2024; 
Suresh et al., 2024). However, the size and quality of the training 
datasets play a crucial role in the performance and generalization of the 
deep learning models (Popescu et al., 2023). This is particularly true in 
the context of studying arthropods, where there are very different taxa 
with a wide variety of morphology. Therefore, good training datasets 
enable the models to learn the complex morphologies of arthropods for 
accurate species identification.

Image acquisition should be optimized to produce a high-quality 
image dataset for arthropod image recognition. This study focuses on 
techniques for imaging dead arthropods collected in the field using 
methods such as sticky traps or pitfall traps, where the specimens are 
killed, and distinguishes these from techniques for imaging living ar-
thropods in their natural habitats. Later, the physical data - the 
arthropod samples - are converted into digital data - images. Digital 
photography (with cameras such as the Single Lens Reflective System) 
and stereomicroscopy are used (Ong et al., 2023; Nolte et al., 2024; 
Zulzahrin et al., 2024). These methods are usually able to capture fine 
morphological details of individual specimens but encounter problems 
when processing a large number of specimens. For example, a Centers 
for Disease Control and Prevention (CDC) baited light trap placed in a 
high mosquito infestation area can catch more than 1000 mosquitoes in 
one day (Ong et al., 2024). Traditionally, the traps would be processed 
manually by highly trained taxonomists using a stereomicroscope. But 
taxonomists are in short supply, and results are prone to human error. To 
aid in standardized, automatic counting and identification, the samples 
need to be digitized, but this would take a very long time using digital 
stereomicroscopy methods. This is because the limited field of view of a 
microscope (the circular area of the viewfinder) usually only allows 
examination of a relatively limited number of arthropods at a time. The 
large amount of time required would ultimately hinder model devel-
opment for automated data collection of arthropods, which would likely 
further delay downstream data analysis and results, in our example, in a 
delay in vector-borne disease control.

Charge-coupled device (CCD) flatbed scanners offer an alternative 
solution to the challenges of large-scale image capture. Buchmann 
(2011) introduced the flatbed scanner for digitizing moth specimens and 
emphasized high resolution scanners such as CreoScitex scanners (http 
s://www.scansolutionsonline.com/media/1170/66_eversmart-pro-ii. 
pdf) that allow effective digitization of moth specimens. They offer 
uniform illumination, high resolution and consistent focus across the 
entire image, making them an ideal tool for capturing fine morpholog-
ical detail without the need for constant adjustments. For example, the 
imaging system of macroPhor™ Flatbed HSI employs a similar concept 
using a continuous focus on the target object and eventually creates an 
image with consistent focus with minimum distortion, compared with 
other imaging systems such as digital single lens reflective system 
(DSLR) that rely on a single lens that may create distortions. In addition, 
Mendez et al. (2018) attempted to use a consumer flatbed scanner with a 
custom 3D-printed box to image a batch of arthropods stored in liquid at 
high resolution, but the method can still be improved to capture a larger 
number of samples. The flatbed scanners can potentially capture many 
specimens simultaneously, while still capturing important morpholog-
ical features for identification, such as wing veins, leg segments and 
body patterns. The consistent image quality of scanners makes them 
particularly suitable for creating datasets that can be reliably used in 
machine learning models. In addition, flatbed scanning reduces the 
variability of lighting and focus that are common in traditional 
photography, enabling greater standardization of images, and therefore 
generalization of downstream image-processing methods.

Our aim in this study is to introduce a digitization method capable of 

processing a large number of arthropods with fine morphological details 
for the development of deep learning models. We present a method 
using a consumer-grade, high-resolution CCD scanner with optimized 
settings for large-scale arthropod imaging. We present different strate-
gies on how to place arthropods on the scanner to achieve image quality 
comparable with stereomicroscope imaging, when it comes to capturing 
morphological features such as wing veins, scale patterns on the thorax 
and legs, antenna type, proboscis and pulps. The method we demon-
strate overcomes several limitations of existing imaging methods, 
including the variable image quality, the high cost of equipment, and the 
time required to capture individual specimens. With this scanner-based 
approach, we have shown that it is possible to rapidly digitize many 
arthropods while maintaining a high standard of image quality across 
the entire dataset.

2. Materials and methods

2.1. Sampling of arthropods

To represent a variety of arthropod collection methods, this new 
method of digitization was conducted at a number of sampling sites 
using different sampling methods. These were the University Campus at 
Aarhus University, Denmark (sticky traps), primary forests in North 
Borneo, Sabah, Malaysia (baited mosquito traps) and urban environ-
ments in Singapore (UV light traps with sticky pad). Each site was 
selected for its arthropod diversity and ongoing biodiversity monitoring 
with its own research objectives.

The sticky traps, placed at Aarhus University, were used to assess 
differences in the ability to identify arthropod diversity on traps with 
different colored backgrounds (Ong and Høye, 2024, 2025). Briefly, two 
transparent sticky cards (20 × 5 cm, Faicuk, China) were glued to an 
acrylic plate and later applied in eight different background colors and 
placed on iron rods at a height of 0.5 m above the ground to capture 
flying insects. The sticky traps were placed in two consecutive years 
2023 and 2024 in summer and early fall (July to September).

Two mechanical traps - Centers for Disease Control and Prevention 
(CDC style, BGS-Pro, https://eu.biogents.com/bg-pro/) and BioGents- 
Sentinel (BGS, https://eu.biogents.com/bg-sentinel/) traps, both with 
artificial human scent and carbon dioxide were used for the baited 
mosquito traps placed in primary forests in North Borneo, Sabah, 
Malaysia. We followed the protocol of Ong et al. (2024a); the traps were 
set in different remote locations in the forest to collect mosquitoes as 
part of a mosquito-borne disease surveillance project and were run from 
September 2022 to November 2024. The traps were equipped with a 5 V 
fan that created suction to drive the arthropods attracted to the trap into 
an internal netted bag. CDC differed by having an additional LED light 
source as an attractant.

For the UV light trap with sticky pads placed in urban environments 
in Singapore, the traps were typically installed to monitor pest flies in 
food and beverage outlets (Colacci et al., 2020). The trap is equipped 
with a 20 W lamp with a UVA spectrum of 365 nm (MO-PLIK 399, Italy, 
https://www.mo-el.com/insect-killers/haccp-mo-stick/mo-plik-399/), 
which typically attracts a range of different pests such as the house fly 
(Musca domestica L.) as well as various moth species. The sticky pad was 
white with grid lines and was collected monthly from January to 
November 2024.

To process the dry arthropod samples from the three sampling 
methods, the arthropods were killed by freezing at − 20 ◦C. For the sticky 
cards, the entire card was placed in the freezer for 24 h before scanning. 
For the CDC and BGS traps, the netted bags were placed in the freezer for 
24 h. All samples were placed on an acrylic plate on the scanner for 
scanning.

2.2. Scanner configuration for arthropod imaging

Buchmann (2011) has previously described the specifications of the 

S.-Q. Ong et al.                                                                                                                                                                                                                                  Current Research in Parasitology & Vector-Borne Diseases 7 (2025) 100268 

2 

https://www.scansolutionsonline.com/media/1170/66_eversmart-pro-ii.pdf
https://www.scansolutionsonline.com/media/1170/66_eversmart-pro-ii.pdf
https://www.scansolutionsonline.com/media/1170/66_eversmart-pro-ii.pdf
https://eu.biogents.com/bg-pro/
https://eu.biogents.com/bg-sentinel/
https://www.mo-el.com/insect-killers/haccp-mo-stick/mo-plik-399/


different scanners and their costs in detail. The scanner we used in this 
method is a high-resolution CCD flatbed scanner (Epson Perfection V850 
Pro), which offers some strong advantages for this application, such as a 
dual lens system and advanced optics above the CCD sensor that can 
capture fine morphological details of small specimens. While there are 
industry-standard scanners with higher resolution used in specimen 
acquisition (e.g. a range of scanners from CreoScitex), the flatbed 
scanner we use is much more favorable in terms of cost and convenience. 
The image quality of the Epson Perfection V850 is better than other 
flatbed scanners with similar specifications, e.g. the Canon LiDE 400, as 
it can capture a greater depth of field. Before scanning, the scanner was 
calibrated with the professional scanning software SilverFast Ai Studio 
with IT-8 targets (ISO 12641, LaserSoft Imaging AG, Germany) to ensure 
uniform illumination and color accuracy during the various scanning 
processes. The scanner (Epson Perfection V850 Pro) was set to profes-
sional mode, exposure type: photo, 48-bit color, 1200 dpi, and a high 
unsharp mask and high contrast were selected for the tone curve. The 
scanner driver used to operate the scanner requires EPSON Scan Utility 
v3.9.3.6 to be installed on a computer before the scanner can be oper-
ated. Additional tools, such as thin glass to hold the dead arthropod 
samples collected with pitfall traps, landing nets, and bait traps were 
used. A thin transparent plastic sheet as a protective layer for the sticky 
cards that come into contact with the surface of the scanner was used. To 
keep the surface of the scanner clean, camera cleaning kits, e.g. 
alcohol-free cleaning agent, blower, brushes, and microfiber cloths, 
were used. For a brief comparison, Table 1 shows the estimated costs for 
the devices that can be used for image acquisition at sufficient quality to 
apply computer vision and deep learning models.

2.3. Placement of the samples on the scanner

The arthropod samples collected by CDC and BGS in Malaysian for-
ests were removed manually from the net bag and placed on a thin glass 
plate. Forceps were used to arrange the position of the arthropods so that 
they did not overlap during digitization. For sticky traps used in 
Denmark, in order to avoid the possible influence of a colored back-
ground on the scanning process, a transparent PVC plate was used as a 
surface for the sticky cards and then attached in front of the background. 
When the transparent plate was removed from the colored background 
and scanned entirely on the glass bed of the scanner, it was a transparent 
plate with sticky cards, without the colored background. The sticky pads 
used to collect arthropods in urban areas of Singapore were too large to 
fit whole onto the scanner (card was A3: 29.7 × 42.0 cm in size), so they 
were cut into three equal parts. Before scanning, a piece of thin, trans-
parent acrylic sheet was used to cover the sticky surface of the card 
before it was placed on the glass bed of the scanner. For some sticky 
cards that were attached to a PVC plate, the PVC plate was placed 
directly on the glass bed and four pieces of cardboard (2 × 2 × 0.5 cm) 
were used to keep the plate at an even distance from the scanner so that 
the adhesive surface did not come into contact with the glass surface of 

the scanner. For optimal imaging, the scanner was cleaned with a mi-
crofiber cloth to remove debris.

2.4. Scanning process

The scanner software was configured to save the images as high- 
resolution JPEG files to minimize file size but maintain image resolu-
tion for machine learning model development. Notably TIFF format may 
contain more information about the images, but it is currently not 
compatible with the machine learning model development pipeline. 
Therefore, in this study, the files were stored as JPEG with the lowest 
compression level. Each scan covered a predefined area of the glass bed 
and allowed many samples to be captured simultaneously. As the sticky 
card was tagged with metadata, including the trap type, date and 
collection location, each scanned image could be stored using the met-
adata and the serial number assigned by the scanner. This metadata 
served as a unique identification code that was assigned to each spec-
imen and used as a reference during subsequent machine learning 
training.

2.5. Datasets construction

To evaluate the quality and suitability of the images for the devel-
opment of deep learning models, we developed deep learning models 
based on image data from two datasets. One was generated by the 
scanner, the other by a stereomicroscope (Leica MZ16 Stereoscope 
M125) with an adapted camera mount for a Canon 50D CMOS sensor. 
Both image datasets derived from the same set of sticky traps (from 
Denmark and Singapore), and CDC and BGS traps (from Malaysia) i.e. 
each sample was imaged using both the scanner and the stereomicro-
scope. The size of the dataset was based on previous studies (Bjerge 
et al., 2023; Ong et al., 2024); at least 300 images were collected from 
the scanner or microscope. We collected more than ten orders of ar-
thropods in the field samples, but we focused on the performance of 
models capable of distinguishing mosquito species (Diptera: Culicidae). 
Mosquitoes are medically important, and their size and the large 
quantity in which they were trapped make them a useful group to test 
the performance of the scanner method. The mosquitoes were assigned 
to three mosquito genera (classes): Aedes, Anopheles and Culex, using the 
annotation tool CVAT (https://www.cvat.ai/). The mosquito images 
were annotated by two entomologists according to the taxonomic keys 
of Rattanarithikul et al. (2005) and Jeffery et al. (2012) and were 
cropped as individual images and arranged in a folder according to the 
classes used for model development.

2.6. Comparison of the model developed from the microscope and scanner 
images

To build the models for automating detection and identification, the 
mosquito image data were split at random into separate subsets for 

Table 1 
Comparison of image quality, efficacy, convenience and cost of different types of equipment that can be used to digitize arthropod samples for subsequent use in deep 
learning model development.

Equipment Maximum resolution of a 
single image (dpi)

Ability to process large numbers of 
arthropods in samples

Degree of 
convenience in usea

Estimated cost 
(USD)b

Example of a device

Digital single-lens reflective 
system c

72 Low High 5400 EOS R5 Mark II + RF24-105 
mm F4 L IS USM Kit

Stereomicroscoped 96 Medium Low 5200 Olympus SZ-61TR 4K Digital 
Stereo Microscope

Flatbed scanners 6400 High Medium 1300 Epson Perfection V850 Pro

a The degree of convenience in use is based on the dimensions, ease of mobility and technical requirements for the device.
b The prices were determined by major retailers on April 30, 2025.
c The digital single-lens reflex system (DSLR) is based on the setting that the images are captured and saved in a compressed JPEG format. The dpi quoted is the 

equivalent of the field of view generated by an A4-sized paper.
d The estimated cost of different stereomicroscopes may vary from brand to brand.
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training (70 %), testing (15 %) and prediction (15 %). After splitting the 
data, augmentation was performed to avoid using the same original data 
only for training, testing or prediction. Before developing the deep 
learning models, a series of data augmentation techniques were per-
formed by rotating all images by 0◦, 90◦, 180◦ and 270◦. The images 
were normalized to obtain a range of [0, 1] pixel values and a resolution 
of 224 × 224. To develop the models, we unfroze the convolutional 
blocks of the pre-trained convolutional neural networks (CNNs) and re- 
trained most of the parameters as described in Bjerge et al. (2023, 2024)
and Ong et al. (2024b) for three deep learning models: InceptionV3, 
MobileNetV2 and ResNet. The selection of these hyperparameters was 
based on Ong et al. (2024b) where the deep learning models were 
trained using the adaptive learning rate optimization algorithm 
(ADAM). We used the Keras deep learning framework on an NVIDIA 
Tesla A100 PCIE GPU platform to train and evaluate the models. 
Training was performed for 50 epochs and the learning rate ranged from 
0.0001 to 0.01 with 32 batches. We implemented early stopping, a 
regularization technique that halts the training process of a deep 
learning model development on the validation set when five consecutive 
epochs show degradation in performance. The performance of these 
models was evaluated using three metrics: accuracy, precision and 
recall. The significance of model performance was also compared using 
the Mann-Whitney U test at P = 0.05.

3. Results

3.1. Dataset

The number of images used to develop the model is shown in Table 2. 
After cropping the individual mosquito images from the original images 
of the scanner and the stereomicroscope, we obtained a total of 447 
cropped images from the stereomicroscope and 436 from the scanner. 
We performed augmentation by rotating each image 0◦, 90◦, 180◦ and 
270◦, bringing the total number of images to 1788 for the microscope 
and 1744 for the scanner.

Images taken with a stereomicroscope (Leica MZ16 Stereoscope 
M125 stereomicroscope with a customized camera mount for a Canon 
50D CMOS sensor) and the scanner are shown in Fig. 1. For the ste-
reomicroscope, despite the lower magnification, the field of view (cir-
cular area of view from the eyepiece) can be enlarged, but the number of 
mosquitoes that can be imaged is still limited (Fig. 1A). In contrast to the 
stereomicroscope, the scanner, in which all mosquitoes are placed on the 
glass bed, can capture all collected mosquitoes in one trap sample 
(Fig. 1B). In addition, Fig. 2 provides a comparison of the magnified 
scanned images with magnified images taken with the 
stereomicroscope.

3.2. Comparison of model performance between stereomicroscope and 
scanned images

Boxplots shown in Fig. 3 provide a comparison of the classification 
performance of three mosquito genera between the scanner and ste-
reomicroscope images. The performance of the models was similar for 
both image datasets, although three different deep learning models were 
used, and the Mann-Whitney U test showed no significant difference 
between the performance of the two datasets (U = 9.0, P = 0.885; 
Fig. 3). This indicates that the images acquired with the scanner and 

stereomicroscope in this study provide a comparable level of perfor-
mance of the deep learning model despite small variations in the mea-
surements. For more details, Supplementary Fig. S1 and S2 show the 
training curves - the accuracy curve and the loss function curve for the 
model performance with scanner and stereomicroscope, respectively, 
and Supplementary Fig. S3 shows the confusion matrices for the model 
performance with scanner and stereomicroscope.

4. Discussion

We present ScannerVision, a method which captures images of a large 
number of arthropods in a single step, using high resolution and image 
quality to train fine-grained classification models. The models enabled 
the classification of arthropod samples from baited light traps into three 
mosquito genera with an average accuracy of 70.74% for scanned im-
ages and 73.65% for stereomicroscope images of three tested models. On 
the other hand, the performance of the model was consistent with the 
previous studies by Ong et al. (2024a), in which the MobileNetV2 model 
was used to classify field-collected Ae. aegypti, Ae. albopictus and Cx. 
quinquefasciatus mosquitoes and achieved an accuracy of 76%. As for the 
performance of the model, our results generally support the previous 
studies (Spiesman et al., 2021; Ong and Hamid, 2022; Ong and Høye, 
2025) showing that InceptionV3 and MobileNetV2 perform best among 
other deep learning models such as MnasNet, ResNet, AlexNet, etc., in 
insect classification. Our study also extends the studies of Pataki et al. 
(2021) and Ong et al. (2023), which aim to use images of citizen com-
munities to classify Aedes mosquitoes, while this study only includes 
field-collected mosquitoes, so the dataset generated by this method 
enables a generalizable model. In addition, most of these previous 
studies captured mosquito images using either a stereomicroscope, a 
specialized device, a smartphone, or a DSLR, all of which have the 
limitation of capturing only a limited number of insect vectors in a single 
image.

The resolution achieved by the scanner enabled visibility of fine 
morphological details of the arthropods, such as the antennae of a biting 
midge of 1 mm body length (Fig. 4).

The visibility of distinguishing morphological features enabling 
taxonomical classification from the images produced by the flatbed 
scanner is illustrated in Fig. 5. The example shows the flat grain beetle 
Cryptolestes sp. and the red flour beetle, Tribolium castaneum (Herbst); 
the flat grain beetle has long, bead-like antennae, whereas the red flour 
beetle has a three-segmented antennal club (https://entnemdept.ufl. 
edu/creatures/urban/beetles/red_flour_beetle.htm).

Our method extends previous studies that proposed software for 
counting flies (Yati and Dey, 2011) and ImageJ (Schneider et al., 2012; 
Parker et al., 2020) commonly used for image analysis, including 
counting the number of insects, but with the limitation of 8-bit mono-
chrome and one insect species. There are also other imaging techniques 
to digitize insect specimens producing images of great detail, such as 
Entomoscope, an open-source photomicroscope for biodiversity dis-
covery, which uses photo stacking to create one sharp image with great 
focal depth (Wührl et al., 2024). However, Entomoscope does not have 
the high throughput needed for processing trap samples with hundreds if 
not thousands of specimens in each.

ScannerVision is relatively inexpensive, using a commercially avail-
able scanner that allows wide access to this technology compared to 
expensive cameras and hardware facilities (e.g. stereomicroscope) or 
industrial scanners (book2net). More importantly, this method could 
support all existing methods of arthropod sampling, such as pitfall traps 
and suction trap samples in addition to the sticky traps and baited traps 
exampled in this study. The portability of the scanner means that it could 
be used in field stations to generate morphological ‘backup’ data for 
studies where samples would otherwise have to be destroyed (e.g. for 
molecular or nutritional analysis) or in situations where it is difficult to 
transfer physical samples (e.g. sending overseas). For wet samples, e.g. 
those that have already been stored in alcohol for preservation, a further 

Table 2 
The number of images of three different mosquito genera used in model 
development.

Target classes/genera Total images

Aedes Anopheles Culex

Stereomicroscope 800 188 800 1788
Scanner 800 144 800 1744
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step may be required to dry the specimens before placing on the scanner.
One of the applications of the method is to support more effective 

digitization of museum specimens of arthropods, which is currently only 
possible individually with most methods for arthropods, e.g. pinned 

specimens (Allan et al., 2019). A large number of captured images could 
also support higher-level digitization, e.g. by creating a large dataset 
that could be used to train more robust deep learning algorithms for 
species classification. As for the next generation of digitization, a 

Fig. 1. A Image of mosquitoes taken with a stereomicroscope (Leica MZ16 Stereoscope M125 stereomicroscope with customized camera mount with Canon 50D 
CMOS sensor) at 50 × magnification (dimension of image 4752 × 3168 px). B Image of sample of trapped mosquitos scanned with the Epson V850 Pro charge- 
coupled device flatbed scanner according to the methods used in this study (image dimension 10200 × 14039 px).

Fig. 2. Comparison of images of mosquitoes taken with a flatbed scanner (dimensions from 220 to 650 px) and a stereomicroscope (dimensions from 230 to 800 px) 
showing the morphology of the specimens in detail.
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standard method for use across the entomology discipline ideally meets 
the need for open and reproducible data/analysis. There is also much 
potential for the application of meta-analytical methods if studies use 
standardized approaches.

ScannerVision has, nevertheless, some limitations. First, the image 
obtained with this method is two-dimensional (2D). While the flatbed 
scanners provide high-resolution, uniform images, they inherently pro-
duce 2D representations of three-dimensional (3D) arthropod speci-
mens. This leads to several challenges. For example, some of the 
important morphological features of arthropods, such as the scale 
pattern on the body segmentation, the segments of the legs and the 
curvature of the wings, are three-dimensional. Flattening the specimen 
during scanning can obscure or distort these features, especially in 
complex body structures (e.g. the thorax and abdomen). Incomplete 
visualization of the specimen is also an inherent constant problem. In 
some cases, important distinguishing features, such as the underside of 
an arthropod or fine structures such as the antennae and legs, are not 
fully visible in a single 2D image. If the animals are positioned in a 
certain way, important body parts may be obscured, or the visibility of 

distinguishing features may be limited. To resolve this, multiple scans 
from different directions (e.g. dorsal, ventral, lateral) may be required, 
but this increases both the time required and the complexity of image 
acquisition. For some sample types, such as sticky traps, where the an-
imals are fixed in a certain body position and are difficult to reposition, 
this is also a major challenge. Combining imaging methods with other 
biomonitoring technologies, such as molecular approaches, may help to 
overcome this (Suresh et al., 2024). Secondly, the samples must be 
stationary, so the method (unlike many other imaging techniques) 
cannot be used for live samples. Loading and unloading is also an 
obstacle to automation, unless the method has been extended to a 
dedicated robotic system [a similar system to the DiversityScanner 
(Wührl et al., 2022)]. Third, the file size of the high-resolution images 
generated by the scanner-based system is very large, e.g. the scanned 
image of this study is in dimensions of 10,200 × 14,039 pixels, file size 
ranged from 40 to 100 MB per image. While the use of high-resolution 
scans is essential for capturing the fine morphological details required 
for accurate arthropod identification, it also presents some challenges. 
For example, image processing can be problematic, especially when 

Fig. 3. Comparison of accuracy, precision and recall (probabilities that have a maximum value of 1.0) between three deep learning models (MobileNetV2, ResNet 
and InceptionV3) developed and tested using images produced using a flatbed scanner (blue bars) and steriomicroscope with camera attachment (orange bars). The 
box covers the interquartile range, with the median indicated by a horizontal line and the mean indicated by a “ × ”.
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applying pre-processing techniques such as image enhancement, 
denoising or segmentation. Deep learning models, especially those using 
convolutional neural networks (CNNs), can be significantly hampered 
by the need to process large inputs, resulting in slow training times and 
high memory consumption (Hayakawa and Narihira, 2020). Standard 
deep learning pipelines often downsize images to reduce the computa-
tional load. However, this can compromise the resolution and detail 
required for accurate classification of arthropods. Alternatively, large 
images can be split into smaller parts to maintain the original resolution 
and reduce memory consumption. This can have the disadvantage that 
objects at the edge of the tiles become only partially visible, and it is 
more difficult for the CNN to learn. This can be avoided by using 
overlapping tiles, but this requires larger image datasets. Importantly, if 
a large proportion of the scanned image does not contain arthropods, it 
could be discarded. However, this would require either manual pro-
cessing of the images or coordinated use of specific areas of the scanner’s 
field of view.

5. Conclusions

ScannerVision is an improvement in providing high-throughput, high 
resolution and high detail arthropod images for training deep learning 
models. The compatibility with existing sampling methods and the 
ability to create large, standardized datasets can contribute to the 
standardization of methods in entomology. Although the 2D imaging 
approach and large file sizes have limitations, these challenges can be 
mitigated by advances in multi-angle imaging technology, data pro-
cessing and automation. By enabling open and reproducible workflows 
in entomology, ScannerVision has the potential to standardize imaging 
procedures and contribute to meta-analytical biodiversity studies.

Ethical approval

All authors confirm that we have complied with all relevant ethical 
regulations. For the mosquito collection aspect, this project was 

Fig. 4. A The scanned original image of a sticky card collected from Aarhus University, Denmark. B The digital enlargement of a biting midge with a scale-bar (1 
mm) at the top. The original image can be viewed via the link https://doi.org/10.6084/m9.figshare.28668845.v2.

Fig. 5. A The scanned original image of a UV light trap sticky pad from a warehouse in Singapore. B The digital enlargement of the flat grain beetle Cryptolestes sp. 
and the red flour beetle Tribolium castaneum with indication (red circles) of the morphological distinguishing features that are visible in the image. The original image 
can be viewed via the link https://doi.org/10.6084/m9.figshare.28668845.v2.
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